澳门买球网站 1

利用基因工程培育新型微生物
通过巧妙的基因操纵行为,美国克雷格文特尔研究所的研究人员将一个细菌基因组移植到酵母中,经改造后再将其移植到一个中空的细菌壳中,从而产生了一个新的微生物。此项技术为对实验室中很少研究的生物体进行基因改造提供了一种更简易的途径,对培育生产燃料或清除有毒化学品的微生物也有重要价值。得益于对酵母和大肠杆菌等微生物的多年研究,科学家们已能利用这些基因工具进行更为复杂的基因改造,如更换整个化学路径制作出可执行更复杂任务或更有效地生产物质的微生物。但是,很多业界关注的微生物,如那些具有生产化学物这种独特能力的微生物并不容易制成。科学家们希望能够设计像光合微生物这样的目标有机物,以更有效地将光转换为燃料。通过将这些细菌的基因组插入酵母,文特尔研究所的科研人员发现,他们更容易地对其进行操控。研究人员表示,人们想要的是酵母或大肠杆菌的能力,而不是拥有其光合作用的器官。将这两种基因组相结合在生物燃料世界里将是极为有趣的事情。文特尔研究所高调寻求从头开始创建生命,各种技术也不断地从中涌现,他们想要创建一个合成基因,然后用其来控制或重新启动一个受体细胞。2007年,该研究所发表论文描述了其基因组移植研究成果,基因组移植是将一种类型的细菌基因组转移到一个密切相关的细菌,从而使宿主带有捐助者的特征。去年,研究人员通过将合成DNA片段缝合在一起创建出一个合成基因组。为了制作出一个合成生物体,研究人员不得不将合成基因组移植到一个细胞内,使其成功地重启细胞。合成基因组被装配入酵母中,意味着它缺少一些细菌的生物标记特征。研究人员发现,如果没有这些标记,宿主细菌会将移植基因组视为外来入侵者而将其摧毁。《科学》杂志网络版上最新发表的一项新技术使此问题迎刃而解。研究人员首次将丝状支原体基因组移植入酵母中。虽然科学家们曾在酵母中生长出细菌DNA片段,但这是首次以这种方式生长出完整的细菌基因组。使用现有的酵母基因工程工具,研究人员在化学上改变了细菌的遗传物质,从而使其携带了细菌的分子标记特征。研究人员将这个改性基因组移植入山羊霉浆菌以产生一个丝状支原体细胞。美国波士顿大学生物工程师吉姆柯林斯表示,此项研究增强了基因组工程的能力并开辟了新的应用领域。对于生物能源和生物材料产业来说,这是一个重大的进步。目前,研究人员正在致力于对其他细菌进行测试,以便将生产技术转移到与生物燃料业更为相关的有机物上。研究人员表示,有机物的遗传路径可分解环境污染物,其通过基因工程移植入细菌后,就可以生存在如酸性池塘这样恶劣和被污染的环境中,然后就可用于对这些区域进行清理。更多阅读《科学》发表论文摘要

马萨诸塞州伍斯特市 –
如果遗传或合成工程生物被释放到环境中,我们将如何知道?除了野外天然存在的数百万种微生物外,我们怎能分辨它呢?这是多机构研究团队所面临的挑战,其中包括伍斯特理工学院(WPI)化学工程助理教授Eric
Young,他正在开发一种生物安全工具,可以根据其独特的DNA特征检测工程微生物。

遗传工程,其中基因被添加到生物的基因组中,而合成生物学,其专注于理解和设计更好的DNA序列,现在被用于制造多种产品,例如药物,如胰岛素和农作物。
。生物技术公司(从初创企业到跨国公司)也使用基因工程来生产洗涤剂,食品配料和生物燃料等产品。

几十年来,美国政府一直赞助研究和开发工程生物以及设计DNA的更好方法,而政府和合成生物学界共同努力开发安全和道德实践,以确保生产的生物是安全的,并且能够被包含。例如,政府赞助开发杀伤开关,使工程有机体无法在实验室外生存。

最近,美国政府和研究科学家已经确定需要新的工具,当它们与无数天然存在的微生物混合时,可以识别工程生物。最终可以部署这些工具来检测环境中的工程生物。如果公司设计的有机体意外逃离实验室或检测有意释放的潜在有害生物,它们可用于保护公司的知识产权。

这是负责开发此类工具的多机构团队正在执行的任务。该项目由寻找工程联系指标(FELIX)项目的18个月奖励资助,该项目由国家情报总监办公室内的情报高级研究项目活动(IARPA)开展,该组织为研究提供资金支持。美国情报界面临的挑战。该奖项的第二阶段可以续签24个月。雷神公司是总部位于马萨诸塞州的国防承包商,是主承包商;Young因为他的部分项目获得了377,746美元的奖励,是五个分包商之一。其他人是约翰霍普金斯大学,普林斯顿大学,加州大学旧金山分校和Mission
Bio,

我们意识到工程和生物工程的力量,Young说,他的专长是合成生物学,包括细菌,酵母和真菌的基因工程。我们对合成生物学的前景感到兴奋,但我们也有道德责任去思考我们开发的技术的潜在负面用途。

澳门买球网站,我的实验室正在开发工程有机体以解决问题,我们使用超出我们要求使用的安全实践,他补充说。希望这个项目能引导我们使用低成本工具,确保每个人都在努力防止生物体进入环境,从大学到制造工厂再到车库中的DIY生物爱好者。

科学家通过将新基因引入其基因组中来创造工程微生物,使其能够生产有价值的药物,生物燃料或食品。含有用于产生胰岛素的人基因的细菌,或含有来自几种生物的多个基因以制备抗疟药青蒿素的酵母是实例。由于这些工程生物中的许多基因存在于自然界中,因此将它们与土壤或水样中的非工程生物区分开来可能具有挑战性。这类似于在大海捞针中找到众所周知的针头,杨说。

他补充说,做出这种区分的关键是确定每种生物的遗传特征。凭借它们的生产方式,大多数基因工程生物体具有一个或多个DNA片段,这些片段对于它们的基因组是独特的,并且使它们与它们的非工程化表亲不同。这些DNA标记可用作标记物以快速发现天然存在的微生物群体中的工程化生物。Young在研究项目中的作用是生成含有这些特定标记的生物工程生物的例子。

我们正在提供检测设备将寻找的专家信息,他说。我们正在考虑过去50年的基因工程,并将所有知识和信息减少到我们最有可能需要找到的生物工程生物的一系列基本特征。这取决于我们的赞助商和团队决定哪些生物是重要的,我们帮助决定我们要看哪些签名。这是非常令人兴奋的工作。

最初,正与两名研究生合作的Young将专注于啤酒酵母,他说这种酵母越来越成为生物工程公司的首选生物,因为它很容易设计并且易于生长,因为几十年来规模化酿造行业的发酵经验。他所识别的特征将有助于检测可能来自公司和大学实验室的已知工程生物。检测可能有意释放到环境中的潜在有害生物将是一个更大的挑战。

当你不知道自己可能需要寻找什么样的生物时,情况要复杂得多,他说。我们必须考虑最有可能的东西以及资源有限的人会创造什么。我们需要创建能够检测各种工程生物的工具。他们需要足够灵活,以便能够检测到特定的一组签名,但随后会发现新添加的签名。我们正在帮助开发一种技术来实现这一目标。

Young生成的知识最终将被纳入由研究团队其他成员开发的台式检测设备中。其他团队成员正在创建机器学习算法,这些算法将找到专家可能无法识别的新签名。Young表示,他希望在项目结束时准备好可用于酵母的检测设备,但在解决更复杂的挑战之前可能需要5到10年。

相关文章